阿尔伯特·爱因斯坦——伟大的物理学家

阿尔伯特·爱因斯坦

  • Albert Einstein
  • (1879年3月14日—1955年4月18日)
  • 继伽利略、牛顿之后最伟大的物理学家。

奇迹年论文

爱因斯坦于1905年在《物理年鉴》发表了四篇划时代的论文。从来没有人能在这么短暂的时间内对于现代物理给出这么多重大贡献。这一年因此被称为“爱因斯坦奇迹年”。这四篇论文分别为:

标题专注领域收件日期发表日期重要性
关于光的产生和转变的一个启发性观点光电效应3月18日6月9日提出光量子假说,即光是由离散的能量粒子(光量子)所组成。这假说关键性地促成了量子力学的早期发展,首先揭示了微观世界的基本特征:波粒二象性。
热的分子运动论所要求的静止液体中悬浮粒子的运动布朗运动5月11日7月18日论述怎样证实原子的物理实在,创建涨落现象研究领域,对于在那时尚具争议性的统计物理学给予强力支持、为随机过程理论的未来发展铺路。
论运动物体的电动力学狭义相对论6月30日9月26日改变旧有的时间与空间的观念,化解麦克斯韦方程组与经典力学定律之间的矛盾,说明以太的概念是多余无用的。
物体的惯性同它所含的能量有关吗?质能等价9月27日11月21日表述物质与能量等价E = mc2(这意味着引力可以弯曲光束)、粒子的静止能量、核能的理论根据。

相对论和爱因斯坦质能方程

爱因斯坦在论文《论运动物体的电动力学》里提出了狭义相对论的两个基本公设:“光速不变”,以及“相对性原理”,按照这两个基本公设对于经典力学在运动速度接近光速时做出一些重要修正,从而化解了麦克斯韦方程组与经典力学定律之间的矛盾。经过整理之后,这些创举成为爱因斯坦的狭义相对论。

承认时空的相对性与光速的不变性导致了几个必然的推论。一是运动物体在其运动方向会表现出长度收缩。二是运动物体会经历时间膨胀。也就是说,一个运动中的钟表要比静止的同样钟表走得慢。三是以太的概念其实是多余无用的。

爱因斯坦在表述质能等价的论文里,从狭义相对论的方程里推导出质能方程E = mc2。这意味着能量和质量其实是一回事,可以相互转换。对于任何物体来说,其质量会随着其速度的增加而增加。

爱因斯坦的相对论曾经有很多年备受争议,他获得1921年诺贝尔物理学奖并不是因为表扬他在相对论做出重大贡献。普朗克是最热烈支持相对论的物理学者之一。

光子与能量量子

在论文《关于光的产生和转变的一个启发性观点》里,爱因斯坦提出光量子假说,即光是由离散的能量量子组成,这能量量子称为光量子,后来被简称为光子。最初,光量子假说遭到物理学者强烈质疑,其中包括马克斯·普朗克以及尼尔斯·玻尔。后来,罗伯特·密立根做实验证实了光电效应的方程,阿瑟·康普顿做康普顿散射实验展示在某种情况下光会表现出粒子性。直到1919年,光量子假说才被广为接受。

爱因斯坦得到了一个结论,频率为f的光束是由能量为hf的光量子所组成;其中,h为普朗克常数。爱因斯坦并没有对这结论给出很多解释,实际而言,他并不确定光量子与光波之间的关系。但是,他的确建议这点子能够解释某些实验结果,尤其是光电效应。

波粒二象性

在爱因斯坦的光量子假说中,光量子只是表现出能量的不连续性,它尚未被赋予粒子应具有的性质,所以不能被严格视为粒子。1909年,在爱因斯坦发表的两篇论文《论辐射问题的现状》与《论我们关于辐射的本性和组成的观点的发展》里,爱因斯坦阐明,光量子具有良好定义的动量,并且在某些方面表现出类点粒子的物理行为。这两篇论文引入了光子的概念(吉尔伯特·路易斯于1926年给出术语光子的命名),启发了量子力学的波粒二象性观念。他又表示,理论物理下一个阶段将会发展出一种能够将光的波动论与光的粒子论融合在一起的理论。在这里,“融合”意味着波粒二象性,或更加延伸,尼尔斯·玻尔后来提出的互补原理。

广义相对论

爱因斯坦在1907-1915年间创建的广义相对论是一种引力理论。根据广义相对论,在质量与质量之间观测到的引力是源自于这些质量所造成的时空弯曲。在现代天文物理学里,广义相对论是重要工具。

在接受1921年诺贝尔物理奖的演讲时,爱因斯坦表示狭义相对论对于惯性运动的偏好并不令人满意,而从最开始就不偏好任何运动状态(不论是匀速运动或加速度运动)的理论,应该会显得更令人满意,因此他才会尝试发展广义相对论。他在1907年论文《关于相对性原理和由此得出的结论》里指出,自由下落实际是一种惯性运动,对于自由下落的观察者而言,狭义相对论的规则应该适用。爱因斯坦并没有对这后来被称为等效原理的论题给出详尽分析。另外,他还初步预言重力红移,即射入引力势阱中的光会发生蓝移,而相反从引力势阱中射出的光会发生红移;又粗略预言光线在重力场中的偏折,即光子的路径在引力场中会发生偏折。这些预言后来纷纷得到了实验验证。

爱因斯坦将1907年论文加以扩充,于1911年写成论文《论重力对光的传播的影响》;在这篇论文里,他对光线在重力场中的偏折重新加以详细分析,得到可以严格测试的结果,即光线经过太阳产生的引力场时被偏折的角度。这预言可以做实验严格检试,因此他呼吁实验者的关注,尽快完成这实验。

经过多年思考引力的内秉性质,爱因斯坦领悟到引力可以定义为时空的弯曲,对于引力的详细描述必须用到几何,更甚言之,几何是发现引力定律的重要工具,因此,他找到大学同学马塞尔·格罗斯曼来帮助他解决数学方面的问题。格罗斯曼建议他使用黎曼几何,因为黎曼张量与从其衍伸的里奇张量都具有广义协变性。1913年他与格罗斯曼共同发表了论文《广义相对论和引力理论纲要》。在这篇论文里,他们给出的场方程很像后来的爱因斯坦场方程,但具有非常有限的协变性,这场方程后来被称为“草稿场方程”。1915年11月,爱因斯坦一连串发表了四篇关于广义相对论的论文。第三篇论文《用广义相对论解释水星近日点运动》详细分析水星的反常进动现象,所得到的理论数值与实验数据完全符合,并且还修改先前对于光子路径在引力场中发生的偏折所做的估算,这修正后来也成功通过实验检试。第四篇论文《引力场方程》终于给出具有广义协变性的场方程,后来称为爱因斯坦场方程,这方程能够描述引力场和物质彼此之间的相互作用;如同约翰·惠勒所说,物质告诉时空怎样弯曲,空间告诉物质怎样移动。在弱引力场的状况下,爱因斯坦场方程必须与牛顿万有引力定律相互啮合,而在零引力场的状况下,爱因斯坦场方程又必须与狭义相对论相互啮合。这两个条件几乎决定了爱因斯坦场方程的形式,也是爱因斯坦给出爱因斯坦场方程的关键概念。

引力波

引力波是时空曲率的涟漪以波动的形式从波源向外传播,同时会有能量向外传输。1916年,爱因斯坦预言了引力波的存在,根据广义相对论,洛伦兹不变性使得引力波的存在成为可能,由于引力相互作用必须以有限速度传播于空间。但根据牛顿万有引力定律无法得到这种结果,因其假定引力相互作用是以无穷高速度传播于空间。

普林斯顿大学物理学家拉塞尔·赫尔斯和约瑟夫·泰勒于1974年发现首个脉冲双星系统PSR B1913+16,通过对其深入研究,首次发现引力波存在的间接定量证据。2016年2月11日,正好在爱因斯坦预言发表100年之后,LIGO团队宣布,已直接探测到引力波,其源头来自于双黑洞融合机制。

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享
留言 抢沙发
头像
来都来了,不说两句?
提交
头像

昵称

取消
昵称表情代码图片

    请登录后查看评论内容